Analyzing police daily activity logs

Introduction

The Sacramento Police Department daily activity logs website was always the first I visited when I worked the early morning crime shifts at the Sacramento Bee.

A public relations officer updated it every morning with a fairly well-standardized list of notable incidents the department responded to the day before, and I would pick a few incidents from this list, make some calls and write up a post for the Bee’s popular crime blog.

Although the daily activity logs were great fodder for the crime blotter, I wondered how accurately the list of incidents represented crime in Sacramento. I wrote a scraper to grab all the daily activity pages from 2013 and downloaded the 2013 Universal Crime Report data, but never got around to using the sources for the paper.

This notebook contains my efforts to compare the Sacramento police activity logs and UCR crime data.

What are most common crimes in UCR and daily activity?

under-reporting certain crimes? crimes that dont appear in logs
hard to link! but if you had these activities you would expect these crimes?
pick a sample of UCRs, find some comparable activity reports, expand?

When do most UCR and daily activity incidents happen?

season, time of day
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
In [2]:
activity = pd.read_csv('data/refine-crimes.csv')
ucr = pd.read_csv('data/RMSData_2012-01-01_to_2012-12-31.csv')

How many?

The number of incidents in the 2012 daily activity logs is 8.5 percent the number of reported crimes in 2012.

In [3]:
print float(activity['Crime'].count()) / float(ucr['InternalID'].count())
0.0854137844296
In [4]:
print "Daily activity frequenciesn"

print activity['Crime'].value_counts()[0:10]
print "nn"
print "Distinct crimes: %s" % len(activity['Crime'].value_counts())
print "Average incidents per crime: %s" % activity['Crime'].value_counts().mean()
print "Median incidents per crime: %s" % activity['Crime'].value_counts().median()
activity['Crime'].value_counts().hist()
plt.title('Distribution of activity frequencies')
plt.show()
Daily activity frequencies

Robbery                    551
Burglary                   483
Subject Stop               469
Assault                    415
Traffic Stop               262
Suspicious Circumstance    223
Suspicious Subject         218
Disturbance                185
Stolen Vehicle             168
Shooting                   152
dtype: int64



Distinct crimes: 268
Average incidents per crime: 20.2723880597
Median incidents per crime: 2.0
In [5]:
print "UCR frequenciesn"
print ucr['Description'].value_counts()[0:10]
print "nn"
print "Distinct crimes: %s" % len(ucr['Description'].value_counts())
print "Average incidents per crime: %s" % ucr['Description'].value_counts().mean()
print "Median incidents per crime: %s" % ucr['Description'].value_counts().median()
ucr['Description'].value_counts().hist()
plt.title('Distribution of UCR frequencies')
plt.show()
UCR frequencies

MISSING PERSON                    4102
459 PC BURG VEHICLE               3907
10851(A)VC TAKE VEH W/O OWNER     3284
484 PC PETTY THEFT                3268
TRAFFIC ACCIDENT-NON INJURY       1543
594(B)(2)(A) VANDALISM <$400      1505
273.5(A) BEAT SPOUSE/CO-HABITA    1446
POSSIBLE FINANCIAL CRIME-I RPT    1445
TOWED/STORED VEH-14602.6          1444
NIHR/MAIL OUT/COUNTER ACCI RPT    1358
dtype: int64



Distinct crimes: 592
Average incidents per crime: 107.444256757
Median incidents per crime: 6.0
In [6]:
top_ucrs = ucr.groupby(['Description']).count().sort_index(by='Description',
                                                         ascending=False)[0:25]

top_activities = activity.groupby(['Crime']).count().sort_index(by='Crime',
                                                          ascending=False)[0:25]

fig = plt.figure()
fig.subplots_adjust(left=0.2, wspace=0.6)

ucr_plot = top_ucrs['Description'].plot(kind="barh")

ax1 = fig.add_subplot(ucr_plot)
ax1.set_title('Top 25 UCR descriptions')
ax1.set_ylabel('')
plt.show()

fig = plt.figure()
fig.subplots_adjust(left=0.2, wspace=0.6)

activity_plot = top_activities['Crime'].plot(kind="barh")

ax2 = fig.add_subplot(activity_plot)
ax2.set_title('Top 25 acitivity incididents')
ax2.set_xlim(0, 600)
ax2.set_ylabel('')
plt.show()

When?

In [7]:
months = ["Jan.", "Feb.", "March", "April", "May", "June", "July", "Aug.", "Sept.", "Oct.", "Nov.", "Dec."]
days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']

def get_activity_date(activity):
    # grabs the posted date from the URL, likely making days off by one
    # TODO scrape dates of the incidents from the pages
    return pd.to_datetime(activity[-8:], format='%Y%m%d')

activity['date'] = activity.url.apply(lambda x: get_activity_date(x))
activity['month'] = activity.date.apply(lambda x: x.month)
activity['weekday'] = activity.date.apply(lambda x: x.weekday())

activity_by_month = activity.groupby('month').size().plot()
activity_by_month.set_title('Activity by month')
activity_by_month.set_xticklabels(months)
activity_by_month.set_xlim(1, 12)
plt.show()
In [8]:
ucr.OccDate = pd.to_datetime(ucr.OccDate)
ucr['weekday'] = ucr.OccDate.apply(lambda x: x.weekday())

ucr_by_day = ucr.groupby('weekday').size().plot()
ucr_by_day.set_xticklabels(days)
ucr_by_day.set_title('UCR by weekday')

plt.show()
In [9]:
ucr['month'] = ucr.OccDate.apply(lambda x: x.month)

ucr_by_month = ucr.groupby('month').size().plot()
ucr_by_month.set_title('UCR by month')
ucr_by_month.set_xticklabels(months)
ucr_by_month.set_xlim(1, 12)
plt.show()
In [10]:
ucr['time'] = ucr.OccDate.apply(lambda x: x.hour + (x.minute / 100))
ucr_by_time = ucr.groupby('time').size().plot()
ucr_by_time.set_title('UCR by time of day')
ucr_by_time.set_xlim(0, 24)
plt.show()
In [11]:
activity_cumsum = activity.groupby('date').size().cumsum().plot()
activity_cumsum.set_title('Total 2012 activities by date')
plt.show()

ucr_cumsum = ucr.groupby('OccDate').size().cumsum().plot()
ucr_cumsum.set_title('Total 2012 UCR by date')
plt.show()
In [12]:
print "Daily activity incidents per day"
activity_per_day = activity.groupby('date').size()
print "Mean: %s" % activity_per_day.mean()
print "Standard dev: %s" % activity_per_day.std()

apd_hist = activity_per_day.hist(bins=25)
apd_hist.set_title('Distribution of daily activity incidents per day')
plt.show()
Daily activity incidents per day
Mean: 15.4164305949
Standard dev: 4.33333560325
In [13]:
def get_md(ucr_date):
    return str(ucr_date.month) + '/' + str(ucr_date.day)

ucr['md'] = ucr.OccDate.apply(get_md)

print "Daily activity incidents per day"
ucr_per_day = ucr.groupby('md').size()
print "Mean: %s" % ucr_per_day.mean()
print "Standard dev: %s" % ucr_per_day.std()

upd_hist = ucr_per_day.hist(bins=25)
upd_hist.set_title('Distribution of UCR crimes per day')
plt.show()
Daily activity incidents per day
Mean: 173.792349727
Standard dev: 20.9051490399
In [ ]:
# TODO nltk?
# TODO combine charts
# TODO Monte Carlo 

Introduction

The Sacramento Police Department daily activity logs website was always the first I visited when I worked the early morning crime shifts at the Sacramento Bee.

A public relations officer updated it every morning with a fairly well-standardized list of notable incidents the department responded to the day before, and I would pick a few incidents from this list, make some calls and write up a post for the Bee's popular crime blog.

Although the daily activity logs were great fodder for the crime blotter, I wondered how accurately the list of incidents represented crime in Sacramento. I wrote a scraper to grab all the daily activity pages from 2013 and downloaded the 2013 Universal Crime Report data, but never got around to using the sources for the paper.

This notebook contains my efforts to compare the Sacramento police activity logs and UCR crime data.

What are most common crimes in UCR and daily activity?

under-reporting certain crimes? crimes that dont appear in logs
hard to link! but if you had these activities you would expect these crimes?
pick a sample of UCRs, find some comparable activity reports, expand?

When do most UCR and daily activity incidents happen?

season, time of day
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
In [2]:
activity = pd.read_csv('data/refine-crimes.csv')
ucr = pd.read_csv('data/RMSData_2012-01-01_to_2012-12-31.csv')

How many?

The number of incidents in the 2012 daily activity logs is 8.5 percent the number of reported crimes in 2012.

In [3]:
print float(activity['Crime'].count()) / float(ucr['InternalID'].count())
0.0854137844296
In [4]:
print "Daily activity frequenciesn"

print activity['Crime'].value_counts()[0:10]
print "nn"
print "Distinct crimes: %s" % len(activity['Crime'].value_counts())
print "Average incidents per crime: %s" % activity['Crime'].value_counts().mean()
print "Median incidents per crime: %s" % activity['Crime'].value_counts().median()
activity['Crime'].value_counts().hist()
plt.title('Distribution of activity frequencies')
plt.show()
Daily activity frequencies

Robbery                    551
Burglary                   483
Subject Stop               469
Assault                    415
Traffic Stop               262
Suspicious Circumstance    223
Suspicious Subject         218
Disturbance                185
Stolen Vehicle             168
Shooting                   152
dtype: int64



Distinct crimes: 268
Average incidents per crime: 20.2723880597
Median incidents per crime: 2.0
In [5]:
print "UCR frequenciesn"
print ucr['Description'].value_counts()[0:10]
print "nn"
print "Distinct crimes: %s" % len(ucr['Description'].value_counts())
print "Average incidents per crime: %s" % ucr['Description'].value_counts().mean()
print "Median incidents per crime: %s" % ucr['Description'].value_counts().median()
ucr['Description'].value_counts().hist()
plt.title('Distribution of UCR frequencies')
plt.show()
UCR frequencies

MISSING PERSON                    4102
459 PC BURG VEHICLE               3907
10851(A)VC TAKE VEH W/O OWNER     3284
484 PC PETTY THEFT                3268
TRAFFIC ACCIDENT-NON INJURY       1543
594(B)(2)(A) VANDALISM <$400      1505
273.5(A) BEAT SPOUSE/CO-HABITA    1446
POSSIBLE FINANCIAL CRIME-I RPT    1445
TOWED/STORED VEH-14602.6          1444
NIHR/MAIL OUT/COUNTER ACCI RPT    1358
dtype: int64



Distinct crimes: 592
Average incidents per crime: 107.444256757
Median incidents per crime: 6.0
In [6]:
top_ucrs = ucr.groupby(['Description']).count().sort_index(by='Description',
                                                         ascending=False)[0:25]

top_activities = activity.groupby(['Crime']).count().sort_index(by='Crime',
                                                          ascending=False)[0:25]

fig = plt.figure()
fig.subplots_adjust(left=0.2, wspace=0.6)

ucr_plot = top_ucrs['Description'].plot(kind="barh")

ax1 = fig.add_subplot(ucr_plot)
ax1.set_title('Top 25 UCR descriptions')
ax1.set_ylabel('')
plt.show()

fig = plt.figure()
fig.subplots_adjust(left=0.2, wspace=0.6)

activity_plot = top_activities['Crime'].plot(kind="barh")

ax2 = fig.add_subplot(activity_plot)
ax2.set_title('Top 25 acitivity incididents')
ax2.set_xlim(0, 600)
ax2.set_ylabel('')
plt.show()

When?

In [7]:
months = ["Jan.", "Feb.", "March", "April", "May", "June", "July", "Aug.", "Sept.", "Oct.", "Nov.", "Dec."]
days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']

def get_activity_date(activity):
    # grabs the posted date from the URL, likely making days off by one
    # TODO scrape dates of the incidents from the pages
    return pd.to_datetime(activity[-8:], format='%Y%m%d')

activity['date'] = activity.url.apply(lambda x: get_activity_date(x))
activity['month'] = activity.date.apply(lambda x: x.month)
activity['weekday'] = activity.date.apply(lambda x: x.weekday())

activity_by_month = activity.groupby('month').size().plot()
activity_by_month.set_title('Activity by month')
activity_by_month.set_xticklabels(months)
activity_by_month.set_xlim(1, 12)
plt.show()
In [8]:
ucr.OccDate = pd.to_datetime(ucr.OccDate)
ucr['weekday'] = ucr.OccDate.apply(lambda x: x.weekday())

ucr_by_day = ucr.groupby('weekday').size().plot()
ucr_by_day.set_xticklabels(days)
ucr_by_day.set_title('UCR by weekday')

plt.show()
In [9]:
ucr['month'] = ucr.OccDate.apply(lambda x: x.month)

ucr_by_month = ucr.groupby('month').size().plot()
ucr_by_month.set_title('UCR by month')
ucr_by_month.set_xticklabels(months)
ucr_by_month.set_xlim(1, 12)
plt.show()
In [10]:
ucr['time'] = ucr.OccDate.apply(lambda x: x.hour + (x.minute / 100))
ucr_by_time = ucr.groupby('time').size().plot()
ucr_by_time.set_title('UCR by time of day')
ucr_by_time.set_xlim(0, 24)
plt.show()
In [11]:
activity_cumsum = activity.groupby('date').size().cumsum().plot()
activity_cumsum.set_title('Total 2012 activities by date')
plt.show()

ucr_cumsum = ucr.groupby('OccDate').size().cumsum().plot()
ucr_cumsum.set_title('Total 2012 UCR by date')
plt.show()
In [12]:
print "Daily activity incidents per day"
activity_per_day = activity.groupby('date').size()
print "Mean: %s" % activity_per_day.mean()
print "Standard dev: %s" % activity_per_day.std()

apd_hist = activity_per_day.hist(bins=25)
apd_hist.set_title('Distribution of daily activity incidents per day')
plt.show()
Daily activity incidents per day
Mean: 15.4164305949
Standard dev: 4.33333560325
In [13]:
def get_md(ucr_date):
    return str(ucr_date.month) + '/' + str(ucr_date.day)

ucr['md'] = ucr.OccDate.apply(get_md)

print "Daily activity incidents per day"
ucr_per_day = ucr.groupby('md').size()
print "Mean: %s" % ucr_per_day.mean()
print "Standard dev: %s" % ucr_per_day.std()

upd_hist = ucr_per_day.hist(bins=25)
upd_hist.set_title('Distribution of UCR crimes per day')
plt.show()
Daily activity incidents per day
Mean: 173.792349727
Standard dev: 20.9051490399
In [ ]:
# TODO nltk?
# TODO combine charts
# TODO Monte Carlo 

 

 

Leave a comment

Your email address will not be published. Required fields are marked *