Creating Interactive Visualizations with Bokeh

There have been many examples of useful and exciting data visualizations for a variety of topics and applications.

In [1]:
from IPython.display import IFrame, HTML
from IPython.core.display import display

display(IFrame("http://demographics.coopercenter.org/DotMap/index.html", '800px', '600px'))
In [2]:
display(IFrame("http://www.nytimes.com/interactive/2014/07/31/world/africa/ebola-virus-outbreak-qa.html", '800px', '600px'))

Most of these invlove directly coding JavaScript.

Not everyone enjoys writing JavaScript.

In [53]:
ar.contours(plot, title="ISO Contours")
show()

In [1]:
from IPython.core.display import HTML
import urllib
def css_styling():
    styles = urllib.urlopen('https://raw.githubusercontent.com/fonnesbeck/Bios366/master/notebooks/styles/custom.css').read()
    return HTML(styles)
css_styling()
Out[1]:

There have been many examples of useful and exciting data visualizations for a variety of topics and applications.

In [1]:
from IPython.display import IFrame, HTML
from IPython.core.display import display

display(IFrame("http://demographics.coopercenter.org/DotMap/index.html", '800px', '600px'))
In [2]:
display(IFrame("http://www.nytimes.com/interactive/2014/07/31/world/africa/ebola-virus-outbreak-qa.html", '800px', '600px'))

Most of these invlove directly coding JavaScript.

Not everyone enjoys writing JavaScript.

 

 

Leave a comment

Your email address will not be published. Required fields are marked *