Pandas Select Rows By Multiple Conditions Code Example

Snippet 1

  # Create variable with TRUE if nationality is USA
american = df['nationality'] == "USA"

# Create variable with TRUE if age is greater than 50
elderly = df['age'] > 50

# Select all cases where nationality is USA and age is greater than 50
df[american & elderly] 

Snippet 2

  >>> df["A"][(df["B"] > 50) & (df["C"] == 900)]
2    5
3    8
Name: A, dtype: int64
    
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"]
2    5
3    8
Name: A, dtype: int64
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"].values
array([5, 8], dtype=int64)
>>> df.loc[(df["B"] > 50) & (df["C"] == 900), "A"] *= 1000
>>> df
      A   B    C
0     9  40  300
1     9  70  700
2  5000  70  900
3  8000  80  900
4     7  50  900
 

Snippet 3

  df.loc[idx]
 

Snippet 4

  # when you wrap conditions in parantheses, you give order
# you do those in brackets first before 'and'
# AND
movies[(movies.duration >= 200) & (movies.genre == 'Drama')]
 

Snippet 5

  df.loc[(df['Salary_in_1000']>=100) & (df['Age']< 60) & (df['FT_Team'].str.startswith('S')),['Name','FT_Team']]
 

Copyright © Code Fetcher 2020

 

 

Leave a comment

Your email address will not be published. Required fields are marked *