Snippet 1 import pandas as pdimport threadingimport timefrom multiprocessing import Queuemy_queue = Queue(maxsize=0)#Let us define our workerdef worker(my_queue): #Add some time to fill up the queue time.sleep(5) while(my_queue.qsize() > 0): entry = my_queue.get() #Let us define our threads herenum_threads = 10threads = []try: for i in range(num_threads): t = threading.Thread(target=worker,args=(my_queue) t.start() … Continue reading Multithreading With Queue In Python 3
Tag: Python
Sqlalchemy Create Engine
from sqlalchemy import create_engine source engine = create_engine(“sqlite:///hawaii.sqlite”) source engine = create_engine(f’sqlite:///../../../ih_final_project_DB/ih_final_project’) con = engine.connect() nombre_tabla = engine.table_names() source def db_connection(path): engine = create_engine(path) connection = engine.connect() return connection source #endpoint = ‘sqlite:///insiders_db.sqlite’ #local endpoint = ‘sqlite:////Users/Alysson/Documents/Projects/Hotel-Booking-Cancelation/data/hotels.sqlite’ #local db = create_engine(endpoint, poolclass=NullPool) connection = db.connect() source protocol = ‘postgresql’ password=ETL_config.password username=ETL_config.username host = ‘localhost’ port… Continue reading Sqlalchemy Create Engine
Regression Trees
Estimated time needed: 20 minutes In this lab you will learn how to implement regression trees using ScikitLearn. We will show what parameters are important, how to train a regression tree, and finally how to determine our regression trees accuracy. Objectives After completing this lab you will be able to: Train a Regression Tree Evaluate… Continue reading Regression Trees
Slicing In Pandas Code Example
Snippet 1 # Select rows 0, 1, 2 (row 3 is not selected) surveys_df[0:3] Snippet 2 # iloc[row slicing, column slicing] surveys_df.iloc[0:3, 1:4] Copyright © Code Fetcher 2020
Slicing Lexicographically Pandas Code Example
Snippet 1 Specifically, .loc[] allows you to select all rows with an index lexicographically using slice notation. This works only if the index is sorted (.sort_index()). Copyright © Code Fetcher 2020
Sum Two Columns Pandas Code Example
Snippet 1 sum_column = df[“col1”] + df[“col2”] Copyright © Code Fetcher 2020
Parallel Inner Products
In [1]: from IPython.parallel import Client, require, interactive In [5]: rc = Client() dv = rc.direct_view() lv = rc.load_balanced_view() In [6]: with dv.sync_imports(): import numpy importing numpy on engine(s) In [7]: mat = numpy.random.random_sample((800, 800)) mat = numpy.asfortranarray(mat) In [8]: def simple_inner(i): column = mat[:, i] # have to use a list comprehension to prevent closure return sum([numpy.inner(column, mat[:, j])… Continue reading Parallel Inner Products
Diagnosing Slow Parallel Inner Products
In [1]: from IPython.parallel import Client, require, interactive In [2]: rc = Client() dv = rc.direct_view() lv = rc.load_balanced_view() In [3]: with dv.sync_imports(): import numpy importing numpy on engine(s) In [4]: mat = numpy.random.random_sample((800, 800)) mat = numpy.asfortranarray(mat) In [5]: def simple_inner(i): column = mat[:, i] # have to use a list comprehension to prevent closure return sum([numpy.inner(column, mat[:, j])… Continue reading Diagnosing Slow Parallel Inner Products
Predicting the future with Google BigQuery
Data too large for file format Data too large for file format source Similar Notebooks planes correlation features exercise python and gbq forntite fbnr scrapping code
Read Csv Uisng Pandas Code Example
Snippet 1 pd.read_csv(‘data.csv’) # doctest: +SKIP Snippet 2 import pandas as pd df = pd.read_csv (r’Path where the CSV file is storedFile name.csv’) print (df) Snippet 3 you should be in the same dir as .py file df = pd.read_csv(‘your_file_name.csv’) Snippet 4 import pandas as pd #import pandas #syntax: pd.read_csv(‘file_location/file_name.csv’) data = pd.read_csv(‘filelocation/fileName.csv’) #reading data… Continue reading Read Csv Uisng Pandas Code Example
Latihan
Latihan Buatlah variabel dengan nama hobi, yang digunakan untuk menampung input dari user dengan label “Hobi kamu apa? : ” , kemudian Cetaklah dengan label Hobi kamu : {hobi} Buatlah variabel nama, yang digunakan untuk menampung input dari user dengan label “Siapa nama kamu? : ” , misal user mengisikan nama “Romi” maka akan tampil… Continue reading Latihan